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Coarse-graining procedures make it possible to model the movement of large numbers of objects,
such as particles in a fluid. Longitudinal student performance data can be modeled similarly by
sorting students into score bins and following the flow of scores through time: trajectories depict
the average scores over time for initial score bins and streamlines provide an approximate way to
calculate the flow of student scores over many years based on only two consecutive years of data.
However, due to the partially stochastic nature of observed scores, the coarse-graining procedure
that sorts students into score bins amplifies a statistical phenomenon known as regression to the
mean (RTM). As a result, streamlines do not provide an accurate prediction for the future per-
formance of students. Here we discuss a new coarse-graining procedure, regression-corrected (RC)
grouping, which reduces RTM in the streamlines. We apply RC streamlines to the Texas State Lon-
gitudinal Data System, which contains standardized testing data for students throughout primary
and secondary school since 2003. We show that the RC streamlines accurately predict trajectories,
using two or three years of data. Therefore RC streamlines can be used to identify the e↵ects of
academic interventions on a time scale comparable to that of policy changes. We illustrate this
assertion by examining a particular policy intervention, Texas’ Student Success Initiative.

I. INTRODUCTION

The No Child Left Behind Act of 2001 (NCLB)
mandated widespread, high-stakes standardized
testing for primary and secondary students through-
out the United States [1]. Struggling students may
be required to receive additional instruction to pass
these exams and failure can result in grade re-
tention [2]. Teachers evaluations and placements
are often determined by the performance gains of
their students on standardized exams [3–5]. Schools
can be closed or restructured due to persistent low
scores, whether overall or for disaggregated sub-
groups [6]. These accountability measures for stu-
dents, teachers, and schools create a strong incentive
for policy makers to find interventions that raise stu-
dent performance. However, evaluating the conse-
quences of legislative actions is di�cult as the poli-
cies a↵ect large numbers of students and may last
only as long as an election cycle, whereas the impacts
of the policies on valued metrics, such as high school
graduation rates and college readiness, require up to
13 years to reach fruition.
A common way to analyze longitudinal datasets

is to use hierarchical linear modeling or struc-
tural equation modeling to model outcomes with
respect to observed variables or unobserved latent
variables [7]. Marder and Bansal (2009) [8] and
Bendinelli and Marder (2012) [9] developed an al-
ternative approach that makes use of standard ideas
from statistical mechanics. Trajectories can repre-
sent the position of any extended object over time.
An example is the parabolic trajectory of a projec-
tile. This is a useful idea especially when the object

is composed of many correlated sub-units. It can
be extended to fluid systems by coarse-graining the
fluid at some point in time and following the motion
of packets of fluid as the flow evolves. This provides
a model for student score trajectories in an education
context, showing average observed scores over time.
A coarse-grained fluid is also frequently described
by a velocity vector field that depicts the average
velocity of particles in a fluid in each coarse-grained
cell. Streamlines can be interpolated from the veloc-
ity vector field to show the anticipated movement of
a particle throughout the space, given some initial
position. Similarly, in the context of student scores,
streamlines can be interpolated from a vector field
that represents the change in score for each grade
transition. Thus, streamlines depict the anticipated
flow of scores over time. For fluids, streamlines are
good approximations to trajectories when the flow
is steady. In the education context, the testing en-
vironment must be stable for streamlines to provide
a good estimate of trajectories, but this condition is
only necessary and not su�cient.

Instead of analyzing individual student outcomes
or the average outcomes for the aggregation of
all students, outcomes are evaluated after coarse-
graining into score bins by sorting students into
groups by their percent score (90-100%, 80-90%,
etc.) in some initial grade. When dealing with stu-
dent scores, we will use the terms ‘coarse graining’
and ‘binning’ interchangeably.

A consequence of the partially stochastic nature
of observed scores and the distribution of observed
scores is the regression of the scores toward the mean
score. This is exacerbated when students are binned
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according to their observed scores. Regression to
the mean (RTM) is present in both trajectories and
streamlines; however, the multiple binning processes
in streamlines exaggerate RTM, resulting in inaccu-
rate depictions of student scores over time.
Here we present a new binning technique, called

regression-corrected (RC) grouping, which reduces
RTM in the streamlines so that they accurately rep-
resent the flow of student scores over time. RC
streamlines can follow a single cohort of students
over time, or they can be constructed using an ac-
celerated longitudinal design to predict longitudinal
outcomes with only two or three years of data. In
this way, RC streamlines can predict longitudinal
outcomes within a time suitable for informing pol-
icy; in addition, the comparison of streamlines from
di↵erent periods can identify the e↵ects of interme-
diate interventions.
Section II summarizes some techniques in educa-

tion research that are currently used to analyze stu-
dent performance over time. While RC grouping
and streamlines could be used in many contexts, Sec-
tion III discusses the setting used for this paper: the
Texas State Longitudinal System and standardized
testing in Texas. Section IV lays the foundation for
the RC streamlines by summarizing the trajectory
and streamline techniques described in Bendinelli
and Marder (2012) [9]. Section V presents a simple
theory for understanding the consequences of RTM,
specifically in regards to trajectories and stream-
lines. Section VI describes the RC grouping tech-
nique and uses the same theory to demonstrate how
RTM is reduced. Section VII applies RC streamlines
to identify the e↵ects of a state-wide intervention
called the Student Success Initiative, while Section
VIII explores additional applications including dis-
aggregation by demographic factors, coarse-graining
by alternate exams, and future predictions of stu-
dent performance. In Section IX, we summarize our
conclusions.

II. BACKGROUND

Longitudinal data analysis methods have been de-
veloped in many fields to study both within-person
changes and between-person di↵erences in outcomes
over time [10]. Within-person changes refer to out-
comes for a single individual and are particularly
important for the analysis of educational policy im-
pacts because they can establish a connection be-
tween an intervention and the resulting changes for
the a↵ected individuals. Between-person di↵erences
are also important to study because they can show
how interventions a↵ect students on a larger scale,
and they can shed light on the di↵erential impacts

of an intervention on di↵erent groups of students,
which can lead to more e�ciently targeted or more
equitable interventions.

Most longitudinal studies utilize a statistical tech-
nique known as hierarchical linear modeling [11, 12],
or a similar technique called structural equation
modeling [13–15], to analytically describe both the
within-person changes and the between-person dif-
ferences in the longitudinal data. The analytical
model may use observed variables or unobserved
latent variables combined with fitted parameters
to best represent the growth of the outcome vari-
able. Individual growth curves represent the within-
person component of the model, and person-specific
parameters (often within a normal distribution of
values) that adjust the intercepts or slopes account
for the between-person variation. The model often
takes the form of a linear, polynomial, or piece-wise
function, although it can have any non-parametric
form.

This idea can be extended to grouped individu-
als through techniques such as group-based trajec-
tory modeling [16] and latent class growth model-
ing [17]. These techniques assume that the popula-
tion is mixed, containing several distinct groups that
are categorized by a latent variable. Using the longi-
tudinal data, individuals are first sorted into groups
based on similar initial growth patterns and then
their average outcomes over time are modeled with a
trajectory. Intervention e↵ects can be compared for
treated groups and control groups within the same
pre-treatment growth trajectory. This technique re-
quires several years of data both before and after
an intervention to establish comparison groups and
then to observe the intervention e↵ects.

The regression techniques in hierarchical linear
modeling or structural equation modeling are famil-
iar to statisticians. However, the language, equa-
tions, and coe�cients in these frameworks can be
di�cult to understand for policy makers and educa-
tors. These techniques often involve computational
packages such as HLM [18] and Mplus [19], which
can act as a black box, potentially leading to misuse
or misinterpretation. The techniques in this paper
are designed to be more intuitive to policy makers
and educators by using visualizations rather than
relying on parametric solutions with tables of com-
puted coe�cients. Nonetheless, the standard regres-
sion methods provide a foundation and a source of
comparison for the new methods described in this
paper.
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A. Age-Period-Cohort E↵ects

We now develop some of the concepts needed
in order to discuss educational data gathered over
time. Between-person di↵erences and within-person
changes in the data can be observed as any of three
time-related variations: age e↵ects, period e↵ects,
and cohort e↵ects. Age e↵ects represent changes
related to aging although in the context of educa-
tion, age e↵ects could be substituted by grade ef-
fects, changes that occur between each grade. Pe-
riod e↵ects represent changes occurring during a spe-
cific time period, a↵ecting people of all ages simi-
larly. Cohort e↵ects represent formative experiences,
changes that are unique to people who experience
the same events at the same time, often because they
were born in the same time period. In an education
context, cohort e↵ects may relate to changes that af-
fect a cohort of students progressing through school
together, completing one grade each year and grad-
uating in the same year.
It can be di�cult to separate age, period, and

cohort e↵ects from each other. This is due to
the inherent relationship between age, time, and
cohort. For studies using birth cohorts—people
born in the same time period—the relationship be-
tween age, year, and birth cohort is Y ear � Age =
Birth Cohort. For students in primary or secondary
school, the relationship between the year, grade,
and graduating cohort is Y ear � Grade + 12 =
High School Graduation Cohort. These relation-
ships make it di�cult to design a study to isolate
grade, period, or cohort e↵ects because it is di�-
cult to control for more than one of these e↵ects.
In addition, there may be several concurrent influ-
ences, causing a combination of grade, period, and
cohort e↵ects. Educational policy changes are usu-
ally either period e↵ects or cohort e↵ects, depending
on the process of implementation and the intended
recipients.
To minimize or isolate the potential sources of

time-related change, studies may focus on a sin-
gle time period or a single cohort. Studies analyz-
ing data from one time period are known as cross-
sectional models. By using data from only one time,
period e↵ects are removed from the analysis and the
time required for data collection is minimized, an
attractive feature for costly studies. Cross-sectional
models show the range of outcomes at a moment
in time and can be helpful for identifying between-
person variation. The students within a cross-
section can be aggregated into a synthetic cohort,
which contains students at every grade throughout
school in a single year. If there were no cohort ef-
fects, the outcomes from a synthetic cohort would
accurately identify grade e↵ects. However, without

other time periods for comparison, grade e↵ects and
cohort e↵ects are completely confounded. Extend-
ing the study longitudinally can help to separate the
grade e↵ects from the cohort e↵ects, although this
can then introduce period e↵ects.
By contrast, single-cohort studies use the longitu-

dinal data from a single graduating cohort of stu-
dents to study within-person change [20]. Cohort
studies are helpful for studying the evolution of in-
dividuals, especially considering that a person may
have many experiences that build upon one another
to cause a particular growth pattern. Single-cohort
studies require several data points for each individ-
ual, which can take years of data collection and can
su↵er from attrition. In addition, while cohort stud-
ies remove cohort e↵ects from the analysis, grade
e↵ects and period e↵ects are confounded. By com-
paring outcomes from multiple cohorts, grade e↵ects
and period e↵ects can be separated, while possibly
reintroducing cohort e↵ects.
Accelerated longitudinal design (ALD) studies are

a compromise between cross-sectional studies and
longitudinal single-cohort studies [21]. ALDs use
data from multiple overlapping cohorts beginning at
di↵erent ages to span a large age range while using
only a few years of data. For example, Miyazaki
and Raudenbush used the National Youth Survey
that contained data for 7 adjacent cohorts over 5
years to study the development of antisocial atti-
tudes from ages 11 to 21 [22]. ALDs study growth
over a large age/grade range without needing to wait
the full time period as in longitudinal studies. This
reduces the cost of the study as well as the attri-
tion due to missing data, while producing results in
a time period that allows for more political influ-
ence. The techniques discussed in this paper can be
categorized as single cohort designs or ALDs.

III. SETTING

Although we expect the methods of this paper to
have general utility, the possibility of testing them
is due to a unique resource provided by the Texas
Education Research Center (ERC), which holds ex-
tensive longitudinal information about Texas stu-
dents, teachers, and schools [23]. The Texas Edu-
cation Agency (TEA) provides the ERC with much
of their student-level data, including demographics
and standardized testing information. Starting in
2003, the state-wide exam was the Texas Assess-
ment of Knowledge and Skills (TAKS), which con-
sisted of annual mathematics and reading exams be-
tween 3rd and 11th grade, as well as periodic exams
in other subjects [24]. In 2012, the exams started
transitioning to the State of Texas Assessments of
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Academic Readiness (STAAR), which had mostly
the same schedule of exams before high school but
replaced grade-specific high school exams with end-
of-course subject exams [25, 26]. To use a consistent
metric, we mostly limit the focus of this paper to
the TAKS mathematics exams (2003-2012), except
for some future predictions that we make with the
STAAR data.

In our research, we have decided to use the raw
percent scores instead of the scaled scores provided
by the TEA. While, psychometrically, scaled scores
are preferable to raw scores when comparing the re-
sults from multiple exams, we feel justified in us-
ing raw scores for several reasons. First, the exams
were compiled from banks of items that were de-
signed and tested to be similar in content and di�-
culty [27]. Each year the exams were designed to be
very similar, resulting in a consistent raw score met-
ric. Second, the raw score conversion tables [28] were
examined and the raw scores corresponding with a
passing score within each grade for the mathematics
TAKS exams was fairly consistent; the score usu-
ally varied by only one question, occasionally by
two questions, and rarely by three (out of approx-
imately 40-50 questions). The maximum possible
raw score within a grade and subject was consistent
over time. Third, the TEA used a one-parameter
logistic function as the item-response theory [27],
which resulted in a one-to-one mapping of the raw
scores to scaled scores; in this model, students with
the same raw score have the same “ability”. Fourth,
the iterative process of estimating the abilities us-
ing the one-parameter logistic model requires pro-
prietary software designed for item response the-
ory calculations and student-level data for specific
test items that are often unavailable for researchers.
Fifth, the TEA converted raw to scaled scores using
scaling constants with a proprietary method based
not only on item response theory, but also subject
to the constraints that a scaled score of 2100 be a
panel-recommended passing score, and 2400 a panel-
recommended commended score. Sixth, the TEA’s
scaling method switched from a horizontal scaling
method (comparable between years within grade and
subject) to a vertical scaling method (comparable
between years and grades within subject) in 2008
due to changes in the Texas Education Code [6]; this
resulted in a large shift in scaled score ranges, with-
out the ability to track longitudinal progress before
2008. Therefore, on the basis of simplicity, trans-
parency, and consistency, we have chosen to use raw
score percentages as our metric.

IV. FOUNDATION

The methods detailed in Bendinelli and Marder
(2012) [9] establish a foundation for the RC stream-
lines developed in this paper. We briefly describe
them again here to provide a background for the
modifications that follow.

A. Trajectories

In physics, trajectories are used to represent the
position of a physical object over time. In an educa-
tion context, trajectories can be used to represent
scores over time. Using a coarse-grained binning
procedure, students are sorted into score bins de-
termined by their TAKS mathematics score in 3rd
grade, the earliest exam in primary school. Specifi-
cally, the score bin limits are determined by the raw
percent scores (90-100%, 80-90%, etc.). Grouping
students into decile score bins provides a compro-
mise between an overwhelming number of individ-
ual student trajectories and a single aggregate tra-
jectory, which would fail to convey most of the infor-
mation available in the data. Once the groups have
been established, the average scores for each group
are plotted for each grade, up to the exit mathe-
matics exams in 11th grade. Therefore, trajecto-
ries are single-cohort studies, depicting the observed
average scores for the score bins over time. Decile
score bins were chosen in part because they are fa-
miliar and correspond to intuition about ‘A’, ‘B’,
‘C’, ‘D’, and ‘F’ students. For a discussion of group-
ing from a more general point of view, see Guthrie
(2018).[29] Only by grouping students according to
prior academic performance and other characteris-
tics are we able to understand e↵ects of educational
policy changes, for these work di↵erently on students
of di↵erent backgrounds. However, as we will see,
the process of grouping creates a set of technical
problems that we have set ourselves in this paper
to resolve.
Figure 1 shows the trajectories for the cohort of

students who graduated high school in 2012. The
thickness of each line is proportional to the number
of students in that score bin. The average scores
in each grade are connected by linear segments, al-
though the connection does not need to be linear.
The performance peaks in 5th and 8th grade will
be discussed in Section VII; otherwise, the trajecto-
ries are fairly flat, without intersections. This is not
surprising when averaging thousands of students, as
prior performance is the strongest indicator of future
performance. Students could be further aggregated
by demographic variables or course taking, for ex-
ample, which would likely result in more movement
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FIG. 1. Trajectories for the cohort of students who grad-
uated in 2012. The students are sorted into percent score
deciles by their maximum 3rd grade mathematics TAKS
score in 2003. The average scores for these groups of stu-
dents are then plotted for the subsequent grades in the
following years, and these average scores are connected
in linear segments. The thickness of the trajectory is
proportional to the number of students in that group.
There are approximately 250,000 students included in
this analysis.

in the trajectories (see Section VIII).
Trajectory plots are of fundamental interest be-

cause they track the average performance of a co-
hort of students at all grades and performance levels
exactly. Therefore, trajectories provide an accurate
depiction of longitudinal student performance on a
large scale and they can be used to analyze the out-
comes of policies in the long term. However, policies
typically have a shorter duration than the nine years
of data that it takes to construct a full trajectory, so
educational policy has likely already changed by the
time the results can be analyzed with this method.
In addition, attrition can introduce bias to the sam-
ple and this becomes more of an issue with longer
studies. It is therefore necessary to identify other
techniques that permit more timely analysis.

B. Streamlines

Streamlines are used in fluid mechanics to repre-
sent the motion of particles in a fluid. Velocity vec-
tor fields are constructed from the average velocity of
particles at various positions in a fluid. Streamlines
begin at an initial position and then follow the flow
created by the velocity vector field, conveying the
anticipated motion of a particle in the fluid from the
starting position. In an education context, vector
fields can be constructed from the change in score
over time to represent the flow of scores through the

FIG. 2. Vector field of score changes and correspond-
ing streamlines for the cohort of 2012. The students are
sorted into new bins each grade, and the average change
in score for each group is calculated from that grade to
the next. The slope of an arrow is equal to the change
in score for that grade and bin. Streamlines are con-
structed, beginning with the average score in 3rd grade
for each bin and then interpolating changes in score from
the vector field to determine the slope of each segment
of the streamline. These streamlines should capture the
flow of student scores throughout the grades, however,
the evident convergence of the streamlines due to RTM
prevents this method from producing more meaningful
results.

grades. Streamlines then represent the anticipated
scores over time for a student with an observed ini-
tial score.
Streamlines can utilize a single cohort design or an

ALD. Cohort streamlines, as in Figure 2, use data
from a single cohort of students as they progress
through school. The students are sorted into score
bins in each grade, and the change in score is calcu-
lated for those groups from that grade to the next.
This di↵ers from a trajectory where the students are
sorted in only the initial grade, as the students in
streamlines are re-grouped into score bins in each
grade. The changes in score for each score bin and
grade transition comprise a vector field from which
streamlines can be interpolated. The streamlines
begin at the average scores for each score bin in
3rd grade and then the slope of each segment is de-
termined by a linear interpolation function for that
grade transition, which is derived from the observed
score changes (it does not need to be linear).
Snapshot streamlines, as in Figure 3, use an ALD

with data from eight sequential cohorts, following
each for two consecutive years. Snapshot stream-
lines are constructed in the same way as the cohort
streamlines, except each grade transition is repre-
sented by a di↵erent cohort of students. In the first
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FIG. 3. Vector field and corresponding streamlines for
each grade transition between 2003 and 2004. The stu-
dents in the synthetic cohort are sorted into groups ac-
cording to their score in 2003, and the average change in
score for each group is calculated from 2003 to the sub-
sequent grade in 2004. The slope of an arrow is equal to
the average change in score between the two neighbor-
ing grades for that bin. The streamlines begin with the
average score for each bin in 3rd grade and then follow
the flow designated by the vector field. The convergence
is a result of RTM.

year, the students from each cohort are sorted into
score bins in their grade and the score change is
calculated for those groups from that year to the
next, when the students have progressed to the next
grade. Therefore snapshot streamlines represent the
score flow throughout the grades while using only
two years of data. Assuming that di↵erent cohorts
perform similarly, snapshot streamlines can be used
to predict longitudinal results from a single cohort.

Figures 4 and 5 show the snapshot streamlines for
2003-2004 and 2012 cohort streamlines, each com-
pared to the trajectories for the cohort of 2012. It is
evident in both cases that the streamlines are con-
verging, di↵ering from the relatively flat trajectories.
The trajectories directly plot the average observed
scores, so the discrepancies between the trajectories
and streamlines points to an issue with the stream-
lines, as they do not accurately represent the flow
of scores through the grades. This inaccuracy is due
to RTM. The next section presents a simple theory
to explain why the iterative score binning process
is causing strong RTM in the streamlines, and then
we present a simple solution to create more accurate
streamlines.

FIG. 4. Snapshot streamlines for 2003-2004 and trajec-
tories for the cohort of 2012. The snapshot streamlines
represent the synthetic cohort of 2003, whereas the tra-
jectories represent the cohort of 2012. In the absence
of cohort e↵ects, the snapshot streamlines could be used
to predict the longitudinal performance of the students,
which is represented by the trajectories. The conver-
gence of the streamlines due to RTM makes the predic-
tions from the snapshot streamlines inaccurate.

FIG. 5. Cohort streamlines and trajectories for the co-
hort of 2012. Both plotting schemes are representing
the same cohort of students, however the streamlines
are more inclusive of students who join the cohort af-
ter 3rd grade. Due to RTM, the streamlines converge
considerably compared to the trajectories. The stream-
lines therefore do not accurately represent the flow of
student scores.

V. REGRESSION TO THE MEAN

Regression to the mean (RTM) is a bulk statistical
phenomenon, and is a consequence of the stochastic
component of the observed scores. RTM depends
on the magnitude of these random fluctuations and
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on the score distributions. RTM is exacerbated by
selection or classification processes. In particular,
by sorting students into score bins by their observed
scores on a single exam, the random component of
their score may force the student into a di↵erent bin
than expected. For a score distribution with more
students performing near the mean than at the ex-
tremes, most of the “wrongly binned” students typi-
cally perform closer to the mean of the distribution.
On a second exam, the average for the score bin will
regress toward the mean as the expected scores are
closer to the distribution’s average.

We use a simple theory to demonstrate the in-
fluences of RTM on the trajectories and streamlines
with the understanding that observed data are never
so simple, but general behavior is best elucidated in
the simple case. Using conditional expectation val-
ues for the exam scores [30], we can better under-
stand the significance of RTM in the coarse-graining
procedures. We invoke classical test theory [31, 32]
to establish the relationship between the observed
score, the true score, and the random component. If
x
i

are the raw scores for exam i, then we can say
that x

i

= t
i

+ e
i

where t
i

is the true score and e
i

is the random component, or error score. The true
score, E(x

i

) = t
i

, is unobserved and is defined to be
the expected score if a student were to be tested re-
peatedly to average over short-term fluctuations due
to temporary circumstances such as a bad night’s
sleep. The error scores for the repeated measure-
ments come from a normal distribution with a mean
of zero, and they are uncorrelated with each other
and with the true score. We can also define z-scores,
z
i

, such that z
i

= (x
i

�µ)/�
x

i

, where �
x

i

is the stan-
dard deviation of x

i

and µ is the mean raw score or
expected score, E(x

i

) = µ. For z-scores, E(z
i

) = 0
and �

z

i

= 1 for all i.

To make concrete computations, we assume that
student scores on exams in successive years are lin-
early correlated. This assumption holds for a bi-
variate normal distribution, and it can also hold for
non-normal distributions. Figure 6 shows the score
distributions and bivariate distributions for the 3rd,
4th, and 5th grade scores of the 2012 cohort, as ex-
amples of typical distributions in the ERC dataset.
All of the score distributions are skewed toward
higher scores, with a ceiling e↵ect from the maxi-
mum score. The 5th and 8th grade distributions, in
particular, had floor e↵ects due to a program called
Student Success Initiative (see Section VII). Despite
these floor and ceiling e↵ects, the assumption of lin-
ear conditional expectation values is not unreason-
able.

Assuming linear conditional expectation values,
the expected score on exam y given a score a on
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FIG. 6. Score distributions for TAKS mathematics ex-
ams in 3rd, 4th, and 5th grade, and correlations between
students’ scores for each grade pair. The score distribu-
tions for most of the exams are skewed as a result of
the ceiling e↵ects from the maximum score. The 5th
grade and 8th grade exams have an additional floor ef-
fect due to the Student Success Initiative, discussed in
Section VII. The relationship between the scores for most
exams is roughly linear.

exam x is:

E(y|x = a) = E(y) + ⇢
x,y

�
y

�
x

(a� E(x)), (V.1)

where ⇢
x,y

is the Pearson correlation coe�cient be-
tween the exams and � is the standard deviation.
For z-scores, this expression simplifies to:

E(z
y

|z
x

= a) = ⇢
z

x

,z

y

a. (V.2)

Following from the Cauchy-Schwarz inequality,
|⇢

z

i

,z

j

|  1. Therefore, this expression explains
RTM; given the score on an exam, the expected
score on another exam is closer to zero, the mean
for z-scores. The less correlated the exams, the more
RTM.
This theory can be expanded to multiple years in

several ways. Trajectories are modeled by condi-
tioning every exam by the initial exam, similar to
how the students are sorted into bins by their initial
scores. The necessary conditional expectation values
are:

E(z2|z1 = a) = ⇢
z1,z2a

E(z3|z1 = a) = ⇢
z1,z3a

E(z4|z1 = a) = ⇢
z1,z4a

...

The sequence of expected scores is shown in Table I
and depends on the correlation coe�cients between
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Trajectories Streamlines

Expression Equivalent Correlation
Coe�cients

Expression Equivalent Correlation
Coe�cients

&3 = a a &3 = a a

&4 = ⇢3,4a ⇢a &4 = ⇢3,4a ⇢a

&5 = ⇢3,5a ⇢a &5 = ⇢4,5⇢3,4a ⇢2a

&6 = ⇢3,6a ⇢a &6 = ⇢5,6⇢4,5⇢3,4a ⇢3a

&7 = ⇢3,7a ⇢a &7 = ⇢6,7⇢5,6⇢4,5⇢3,4a ⇢4a

TABLE I. Anticipated sequences of scores for trajectories and streamlines with respect to the initial score. The full
expression and the expression for equivalent correlation coe�cients are given for several exams.

each exam and the first exam. If it is assumed
that all of the exam pairs have the same correlation
coe�cient ⇢

z

i

,z

j

= ⇢, this sequence would become
a, ⇢a, ⇢a, ⇢a, etc. Therefore the RTM takes place
during the first grade transition but not thereafter.
The assumption of equivalent correlation coe�cients
is not completely borne out in the data, as exams
tend to be less correlated with time, but it is illus-
trative of the basic patterns of RTM.
Streamlines are constructed using a first-order

Markov process, with each exam being conditioned
only by the previous exam. This process is described
by the following conditional expectation values:

E(z2|z1 = a) = ⇢
z1,z2a

E(z3|z2 = b) = ⇢
z2,z3b

E(z4|z3 = c) = ⇢
z3,z4c

...

To create a continuous streamline, the score for one
exam is used as the initial condition for the next, so
that the anticipated values for the scores are

&1 = a

&2 = ⇢
z1,z2a

&3 = ⇢
z2,z3&2 = ⇢

z2,z3⇢z1,z2a

&4 = ⇢
z3,z4&3 = ⇢

z3,z4⇢z2,z3⇢z1,z2a

...

For streamlines, the scores are proportional to the
product of previous correlation coe�cients. For
equivalent correlation coe�cients ⇢, the sequence be-
comes a, ⇢a, ⇢2a, ⇢3a, etc. It is obvious in this case
that the scores continually regress towards the mean
of zero. The sequences for trajectories and stream-
lines can be compared in Table I. While this theory is
simple and requires assumptions that may not hold
with observed scores, Figure 5 exhibits RTM mainly
in the first segment of the trajectories but through-
out the streamlines, aligning with the observations
from the theory.

VI. REGRESSION-CORRECTED
GROUPING

The sequence of anticipated scores in the tra-
jectory framework demonstrates the magnitude of
RTM each year after a binning process. The ma-
jority of the RTM occurs between the binning exam
and the next, in the first grade transition. Stream-
lines are essentially several short trajectories strung
together; each segment is the first grade transition
in a new trajectory. Since this is exactly the por-
tion of the trajectory that contains the majority of
the RTM, it is no surprise that the streamlines have
such extreme RTM. However, the RTM in the tra-
jectories is mostly resolved by the second grade tran-
sition. Therefore, if the streamlines instead utilized
the second grade transition for each short trajectory,
the RTM would have already been mostly resolved.
This is the premise of the new binning procedure,
called regression-corrected (RC) grouping.
For the uncorrected streamlines described above,

students are sorted by their scores in grade i for
i 2 [3, 10] and the average change in score is calcu-
lated for those groups between grades i to i+1. The
scores from the binning exams are included in the
change-in-score calculations. With RC grouping, we
delay the change-in-score calculation by one year. In
RC streamlines, students are sorted by their scores
in grade i for i 2 [3, 9] and the changes in score are
calculated for those groups between grades i + 1 to
i + 2. Excluding the binning exam scores from the
change-in-score calculations reduces the magnitude
of RTM. After the vector field is established from
the change-in-score calculations, continuous stream-
lines are constructed. In essence, the students for
each grade transition are sorted into score bins by a
separate exam from the exams used to calculate the
change in score. We have chosen to use the previ-
ous exam of the same subject (mathematics) but it
could be any other exam that is reasonably well cor-
related with the exams used to calculate the change
in score. An example of using the reading score for
sorting is discussed in Section VIII and it demon-
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strates that RC streamlines can be constructed with
only two years of data.
We can analyze RC streamlines using the condi-

tional expectation values, as above. For each bin-
ning process, we calculate a pair of expectation val-
ues conditioned on the binned scores. The necessary
pairs of expectation values are:

⇢
E(z2|z1 = a) = ⇢

z1,z2a

E(z3|z1 = a) = ⇢
z1,z3a

⇢
E(z3|z2 = b) = ⇢

z2,z3b

E(z4|z2 = b) = ⇢
z2,z4b

⇢
E(z4|z3 = c) = ⇢

z3,z4c

E(z5|z3 = c) = ⇢
z3,z5c

...

The di↵erences of the two scores in each pair are
used as the slopes for each of the vectors to con-
struct the RC streamlines. A continuous stream-
line is strung together by using the previous score
as the initial condition for the next pair. The ini-
tial conditions (b, c, etc.) can be calculated by set-
ting the expectation values for the same exam equal
to each other. For example, we would need to find
b such that E(z3|z1 = a) = E(z3|z2 = b). This
gives b =

⇢

z1,z3
⇢

z2,z3
a, which then allows us to calculate

E(z4|z2 = b). Using this method iteratively gives a
sequence of scores in the RC streamlines of

&1 = a (Not shown on the plot)

&2 = E(z2|z1 = a) = ⇢
z1,z2a

&3 = E(z3|z1 = a) = ⇢
z1,z3a

&4 = E(z4|z2 : E(z3|z2) = &3)

= E(z4|z2 : ⇢
z2,z3z2 = ⇢

z1,z3a)

= E(z4|z2 =
⇢
z1,z3

⇢
z2,z3

a) =
⇢
z2,z4⇢z1,z3
⇢
z2,z3

a

&5 = E(z5|z3 : E(z4|z3) = &4)

= E(z5|z3 : ⇢
z3,z4z3 =

⇢
z2,z4⇢z1,z3
⇢
z2,z3

a)

= E(z5|z3 =
⇢
z2,z4⇢z1,z3

⇢
z3,z4⇢z2,z3

a) =
⇢
z3,z5⇢z2,z4⇢z1,z3
⇢
z3,z4⇢z2,z3

a

...

&
n

=
⇢
z

n�2,zn⇢zn�3,zn�1⇢zn�4,zn�2 ...⇢z1,z3
⇢
z

n�2,zn�1⇢zn�3,zn�2 ...⇢z2,z3
a

=

n�2Y

p=1

(⇢
p,p+2)

n�2Y

q=2

(⇢
q,q+1)

a (8n � 4)

Scores for Equivalent Correlation Coe�cients

Trajectories Streamlines Regression-
Corrected
Streamlines

&3 a a a

&4 ⇢a ⇢a ⇢a

&5 ⇢a ⇢2a ⇢a

&6 ⇢a ⇢3a ⇢a

&7 ⇢a ⇢4a ⇢a

&8 ⇢a ⇢5a ⇢a

&9 ⇢a ⇢6a ⇢a

&10 ⇢a ⇢7a ⇢a

&11 ⇢a ⇢8a ⇢a

TABLE II. Comparison between the score sequences
within the trajectory, cohort streamline, and RC cohort
streamline frameworks, assuming every pair of exams has
the same correlation coe�cient.

In this sequence, the coe�cients of the scores are
ratios of Pearson correlation coe�cients between the
exams. Again, if we were to assume the same cor-
relation coe�cients between all of the exams, the
values in the sequence would be a, ⇢a, ⇢a, ⇢a, etc.,
which is identical to the sequence for the trajectory.
Table II shows the sequences for the special case

where the correlation coe�cients are the same be-
tween every exam. The trajectory and RC stream-
line sequences only have RTM between the 3rd and
4th grade exams, whereas the streamline sequence
continuously regresses toward the mean. Despite the
unlikely assumption of equivalent correlation coef-
ficients, this is an indication that the RC stream-
lines may successfully reduce RTM. Table III shows
the expressions and values for the expected scores
in the trajectory, streamline, and RC streamline
frameworks, using the Pearson correlation coe�-
cients from the ERC dataset for the cohort of 2012.
While the correlation decreases as the exams are fur-
ther apart in time, the RTM in the trajectories and
RC streamlines are nearly identical, whereas the un-
corrected streamlines exhibit extreme RTM.
Figure 7 shows the RC cohort streamlines and the

trajectories for the cohort of students that gradu-
ated in 2012. Overall, the two frameworks have
very similar results. The slight di↵erences between
the two frameworks are meaningful; RC streamlines
can include students who join the cohort after 3rd
grade. Trajectories require students to have a 3rd
and 4th grade score whereas RC streamlines require
any three consecutive scores (grades i, i + 1, and
i+2) within the cohort to be included for a segment
(from grade i + 1 to i + 2). Therefore, trajectories
are more inclusive of joiners before 5th grade and RC
streamlines are more inclusive after 5th grade. In the
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Trajectories Streamlines Regression-Corrected Streamlines

Expression Value Expression Value Expression Value

&3 = a a &3 = a a &3 = a a

&4 = ⇢3,4a .73a &4 = ⇢3,4a .73a &4 = ⇢3,4a .73a

&5 = ⇢3,5a .67a &5 = ⇢4,5&4 .53a &5 = ⇢3,5a .67a

&6 = ⇢3,6a .65a &6 = ⇢5,6&5 .38a &6 =
⇢4,6
⇢4,5

&5 .64a

&7 = ⇢3,7a .63a &7 = ⇢6,7&6 .30a &7 =
⇢5,7
⇢5,6

&6 .62a

&8 = ⇢3,8a .62a &8 = ⇢7,8&7 .23a &8 =
⇢6,8
⇢6,7

&7 .59a

&9 = ⇢3,9a .58a &9 = ⇢8,9&8 .18a &9 =
⇢7,9
⇢7,8

&8 .57a

&10 = ⇢3,10a .58a &10 = ⇢9,10&9 .15a &10 =
⇢8,10
⇢8,9

&9 .56a

&11 = ⇢3,11a .54a &11 = ⇢10,11&10 .12a &11 =
⇢9,11
⇢9,10

&10 .53a

TABLE III. Comparison between the score sequences within the trajectory, cohort streamline, and RC cohort stream-
line frameworks, using the Pearson correlation coe�cients computed from the data for the cohort of 2012.

FIG. 7. RC cohort streamlines and trajectories for the
cohort of 2012. The RC streamlines and the trajecto-
ries correspond very well. The slight di↵erences are due
to the students who join or leave the cohort. Before
5th grade, trajectory plots are slightly more inclusive of
joiners. After 5th grade, RC cohort streamlines are more
inclusive.

data, this corresponds with lower performance in the
RC streamlines after 5th grade, as mobility has been
shown to be correlated with lower performance [33].
Not only do RC cohort streamlines produce accurate
longitudinal results, but they can better capture the
performance of temporary cohort members.

RC streamlines can also utilize an Accelerated
Longitudinal Design, reducing the required years of
data to only three years. When using mathematics
scores exclusively, the students are sorted by their
score in a first year and then the changes in score
are calculated between a second and third year. Fig-
ure 8 shows the RC snapshot streamlines for 2003-
2005 compared to the trajectory for the cohort of

FIG. 8. RC snapshot streamlines for 2003-2005 and tra-
jectories for the 2012 cohort. The 8th grade peaks ob-
served in the lower-performing trajectories (2008), which
are missing in the RC snapshot streamlines (2003-2005),
are a result of the Student Success Initiative and the Ac-
celerated Mathematics Instruction, which was provided
to low-performing 8th grade students starting in 2008.

2012. While the two frameworks are fairly com-
parable, there is an 8th grade performance peak in
the trajectories that is missing in the RC snapshot
streamlines. Again, this di↵erence is meaningful and
it demonstrates a change in policy that a↵ected the
8th graders by 2008 (trajectories) but not in 2005
(RC snapshot streamlines) called the Student Suc-
cess Initiative.

VII. APPLICATION: SSI

The Student Success Initiative (SSI), established
in 1999, encompasses several initiatives intended
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to promote grade-level performance in mathemat-
ics and reading in Texas. One component of the
SSI is a set of grade promotion requirements in 5th
and 8th grade; if students fail the mathematics or
reading exam three times then they will be retained
in 5th or 8th grade for another year unless they
are excused by a committee [2]. In addition, strug-
gling students in every grade, especially in the high-
stakes 5th and 8th grades, can receive additional in-
struction called Accelerated Mathematics/Reading
Instruction (AMI/ARI) [34].

SSI was implemented gradually along with the co-
hort of 2012. In the 1999-2000 school year, SSI only
impacted Kindergarten students, and the program
expanded to include an additional grade each year
[35]. Therefore, the first 5th grade retention and
ARI/AMI occurred in the 2004-2005 school year,
and the first 8th grade retention and ARI/AMI oc-
curred in the 2007-2008 school year. This timeline
of implementation may explain the similarities and
di↵erences in performance in Figure 8. The students
in the trajectories were the first cohort of students
to be a↵ected by SSI in each grade. The students in
the RC snapshot streamlines were only impacted by
SSI up through 5th grade. Therefore, a performance
peak can be seen as a result of the 5th grade high-
stakes exam in both frameworks, but the 8th grade
peak is only seen in the trajectories.

Figure 9 shows the RC snapshot streamlines from
2007-2009, after the SSI impacted students up to
8th grade. The 8th grade performance peak is evi-
dent in both the trajectories and the RC snapshot
streamlines. It should be mentioned that the fund-
ing for SSI has been reduced dramatically in recent
years, dropping from over $150 million annually in
2011 [35] to $5.5 million in the 2018-2019 biennium
budget [36].

Overall, the RC snapshot streamlines and trajec-
tories are remarkably similar despite the significant
di↵erence in the number of years of testing data
required for the plot: trajectories use 9 years of
data whereas RC snapshot streamlines only use 3
years. Therefore, in the absence of policy changes,
RC snapshot streamlines can make accurate longitu-
dinal predictions and in the event of a policy change,
RC snapshot streamlines before and after can be
compared to identify the e↵ects of the intermediate
intervention. RC snapshot streamlines could be a
powerful tool for education researchers, particularly
those who work at State Education Agencies and are
required to produce rapid results to influence policy
[37].

FIG. 9. RC snapshot streamlines for 2007-2009 and tra-
jectories for the 2012 cohort. The double peaks in 5th
and 8th grade, due to SSI and AMI, are observed in
both the trajectories and the RC snapshot streamlines.
These interventions were provided to low-performing K-
8th grade students.

VIII. OTHER APPLICATIONS

A. Disaggregation

In addition to grouping students by their observed
scores, the students in RC streamlines and trajec-
tories can be grouped according to other variables
of interest. For example, students could be disag-
gregated by demographic variables to study equity
and performance disparities. In the Texas Longi-
tudinal Data System, some of the available demo-
graphic variables include gender, socio-economic sta-
tus (SES) with respect to free or reduced lunch sta-
tus, and race/ethnicity.
Figure 10 shows the trajectories for the cohort of

2012 disaggregated by gender. Male and female stu-
dents perform similarly, with female students per-
forming slightly better on the TAKS mathematics
exams. Figure 11 shows the trajectories for the low-
income students who receive free or reduced lunch,
disaggregated by race/ethnicity. The trajectories for
each score bin are separated into subplots to high-
light the within-bin di↵erences.
Students can also be disaggregated by course tak-

ing. Figure 12 shows the trajectories for the students
in the cohort of 2012, disaggregated by the highest
level of physics that they took in high school. In
Texas, the students could take advanced placement
(AP) physics, basic physics, or integrated physics
and chemistry (IPC). For the cohort of 2012, the
students were required to take at least basic physics
to satisfy the Recommended High School Program,
although IPC was su�cient for the Minimum High
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FIG. 10. Trajectories for the cohort of 2012 disaggre-
gated by gender. There are minimal performance dis-
parities associated with di↵erences in gender.

School Program. The high school science require-
ments in Texas changed in 2014, removing the basic
physics requirement [38].

B. Binning by Alternate Exam

One unfortunate consequence of using the RC
grouping process for snapshot streamlines is the ne-
cessity of a third year of data. However, RC snap-
shot streamlines can be constructed using only two
years of data if an alternate exam is used for binning
the students. Students in Texas were assessed in
both mathematics and reading annually; therefore,
the reading exam is a consistent alternate exam for
sorting the students into score bins. Figure 13 shows
the RC snapshot streamlines of 2008-2009, showing
the flow in mathematics scores with students sorted
by their reading scores in 2008. This demonstrates
that accurate RC snapshot streamlines can be con-
structed with only two years of data; the quanti-
tative improvements to the streamlines through the
RC process do not require additional data collection
time.

C. Future Predictions

To make future predictions of student perfor-
mance in Texas it is necessary to use data from a
new exam whose roll-out started in 2011-2012, the
State of Texas Assessments of Academic Readiness
(STAAR). Not enough time has passed since STAAR
was first implemented to construct a full trajectory
plot, although RC snapshot streamlines can be con-
structed. Figure 14 shows the partial trajectory for

FIG. 11. Trajectories for the low-income students in the
cohort of 2012, disaggregated by race/ethnicity. Lat-
inx/Hispanic and White low-income students perform
very similarly.

the first cohort of students who took STAAR in
3rd grade (6th graders in 2015) and the RC snap-
shot streamlines from 2012-2014. The dip in per-
formance in 2015 compared to the predictions may
be real. The STAAR mathematics performances in
2015 were so low compared to the State’s expecta-
tions that the Texas Education Commissioner de-
cided not to use the mathematics exams for any ac-
countability measures [39]. The cause for the drop
in performance could be a change in mathematics
curriculum standards that was implemented in the
2014-2015 school year [40], a↵ecting the spring 2015
scores, or it could be the delayed result of budget
cuts that started in 2011 [41].

IX. CONCLUSIONS

We have developed a new method that can visual-
ize, analyze, and predict longitudinal student testing
data. RC streamlines improve on the streamlines
created by Bendinelli and Marder [9] by reducing
the e↵ects of RTM. Consequently, the RC stream-
lines can be used to predict long-term student test-
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FIG. 12. The trajectories for the cohort of 2012 disaggre-
gated by highest level of physics course taking. Despite
having similar 3rd grade scores, AP physics students out-
perform their basic physics and IPC counterparts.

FIG. 13. RC snapshot streamlines for 2008-2009 and
trajectories for the 2012 cohort. The students are sorted
into score bins by their 2008 reading exams and the
changes in score are calculated between their 2008-2009
mathematics exams.

ing performance with only two or three consecutive
years of data. RC streamlines can also be used to
determine the outcomes of interventions by compar-
ing predictions derived before and after the inter-
vention. This technique has the potential to analyze
outcomes rapidly enough for the results to influence
policy decisions.
Trajectory plots are a visualization tool to ob-

serve long-term trends in the scores for groups of
students that are determined by the initial scores.
Trajectories are a fundamental longitudinal analy-
sis technique, as they show the average observed
scores over time for the students in each initial score
bin. By coarse-graining the students into score bins,

FIG. 14. Partial trajectories for the students who
were 6th graders in 2015 and RC snapshot streamlines
for 2012-2014. The dip in observed performance in
2015 caused the Texas Education Commissioner to can-
cel accountability measures related to the mathematics
scores [39].

trajectories provide a compromise between the over-
whelming information at the individual student level
and the loss of information in the full aggregate,
which groups completely di↵erent types of students
together. Trajectories act as a source of comparison
for longitudinal prediction methods, such as snap-
shot streamlines. The longitudinal nature of the
trajectory plots causes some limitations. The tra-
jectories are not inclusive of students who join the
cohort after the initial grade, and similar to other
longitudinal techniques, trajectories su↵er from at-
trition. Full trajectories require almost a decade of
data to follow the scores of students throughout pri-
mary and secondary school; therefore, they are only
possible to assemble after the students have already
graduated.
Streamline plotting, as described in Bendinelli and

Marder [9], is a tool inspired by techniques in statis-
tical mechanics that models the movement of parti-
cles in a fluid. Streamlines in an education context
use the changes in score for students in each score bin
and for each grade transition to represent the flow of
scores through the grades. The streamlines can have
a single-cohort design, known as cohort streamlines,
or they can utilize an ALD with two years of data,
called snapshot streamlines. However, the repeated
sorting of students into score bins results in an ex-
aggerated RTM, rendering the streamlines quantita-
tively inaccurate.
RC streamlines use a separate exam to create the

score bins from the exams used to calculate the
changes in score. In this way, the RTM is reduced
considerably, resulting in acceptably accurate depic-
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tions of score flow. RC cohort streamlines are an
alternative to trajectories, as both follow a single
cohort of students throughout school; however, the
RC cohort streamlines include additional students
who join the cohort after the initial exam. RC snap-
shot streamlines use three consecutive years of data
to make predictions of the score flow throughout the
grades; the first year is used to sort the students into
score bins and the second and third years are used to
calculate the change in score. RC snapshot stream-
lines can also be constructed from only two years of
data, as long as the sorting exams are not used in
the change-in-score calculations. We demonstrated
this by using the reading exams to form score bins
and the mathematics exams for the changes in score.
Deviations between the RC snapshot streamlines

and trajectories are indications of a policy change.
Similarly, di↵erences between RC snapshot stream-
lines from di↵erent years identify the e↵ects of in-
termediate interventions. This was demonstrated by
identifying the e↵ects of SSI in the Texas State Lon-
gitudinal Data System. SSI was implemented along
with the cohort of students who graduated in 2012
and it mandated especially high-stakes mathematics
and reading exams in 5th and 8th grade. By com-
paring the RC snapshot streamlines from 2003-2005
to those from 2007-2009, the e↵ects of the 8th grade
SSI policies can be identified.
RC grouping, trajectories, and RC streamlines

can be expanded in several ways. Students can
be further disaggregated by other variables, such
as demographics or course taking, to identify the
between-person di↵erences in within-person changes
over time. Furthermore, RTM is not only a con-
cern when creating streamline plots. Texas is imple-
menting new school accountability measures begin-
ning partially in the 2018-2019 school year and fully
by the 2019-2020 school year that use the relative
score classifications of the students from one year
to the next as a component of the metric [42]. As
demonstrated with the streamlines and trajectories,
classifying students based on observed scores leads
to RTM. Therefore, RTM can be expected to a↵ect
the new school accountability measures and to have
potentially profound consequences for Texas schools.
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